相关习题
 0  252860  252868  252874  252878  252884  252886  252890  252896  252898  252904  252910  252914  252916  252920  252926  252928  252934  252938  252940  252944  252946  252950  252952  252954  252955  252956  252958  252959  252960  252962  252964  252968  252970  252974  252976  252980  252986  252988  252994  252998  253000  253004  253010  253016  253018  253024  253028  253030  253036  253040  253046  253054  266669 

科目: 来源: 题型:解答题

13.已知|z|=1,设复数u=z2-2,求|u|的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m(m>0)与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求|AB|.

查看答案和解析>>

科目: 来源: 题型:填空题

11.函数f(x)=2x-3,g(x+2)=f(x+1),g(x)=2x-5.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点分别为F1,F2,上顶点为A,过F1的直线l:x-y+2=0与y轴交于点M,满足|OM|=|OA|2(O为坐标原点)且,直线l与直线l′:x-y+m=0(m<0)之间的距离为$\frac{5\sqrt{2}}{4}$.
(1)求椭圆C的方程:
(2)在直线l′上是否存在点P,满足|PF1|=3|PF2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

9.不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,则正数λ的取值范围为(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{3}}{3}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线1是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,求证:OA⊥OB.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知曲线C:$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
(1)求曲线C,直线l的普通方程;
(2)直线1与曲线C交于P,Q两点,求|PQ|.

查看答案和解析>>

科目: 来源: 题型:解答题

6.求直线$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$被圆(x-1)2+y2=1所截得的线段的长度.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>D)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知a,b,c>0,$\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{{b}^{2}}{1+{b}^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$=1,证明.αbc≤$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案