相关习题
 0  256030  256038  256044  256048  256054  256056  256060  256066  256068  256074  256080  256084  256086  256090  256096  256098  256104  256108  256110  256114  256116  256120  256122  256124  256125  256126  256128  256129  256130  256132  256134  256138  256140  256144  256146  256150  256156  256158  256164  256168  256170  256174  256180  256186  256188  256194  256198  256200  256206  256210  256216  256224  266669 

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且,

(1)求证:平面平面

(2)设上的动点,求与平面所成最大角的正切值;

(3)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中是公理的是

A. 在空间中,如果两个角的两条边对应平行,那么这两个角相等或互补

B. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

C. 平行于同一条直线的两条直线平行

D. 如果两个平行平面同时与第三个平面相交,那么它们的交线平行

查看答案和解析>>

科目: 来源: 题型:

【题目】已知奇函数对任意,总有,且当时,.

(1)求证:上的减函数;

(2)求上的最大值和最小值;

(3)若,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】若直线与圆交于两点,且关于直线对称,动点P在不等式组表示的平面区域内部及边界上运动,则的取值范围是

A B

C D

查看答案和解析>>

科目: 来源: 题型:

【题目】,在平面直角坐标系中,已知向,向,动点的轨迹为.

1求轨迹的方程,并说明该方程所表示曲线的形状

2已知,证明存在圆心在原点的圆,使得该圆的任意一条切线与轨迹恒有两个交点,且为坐标原点),并求该圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为t为参数,t∈R).

求曲线C的标准方程和直线l的普通方程;

若点P为曲线C上的动点,求点P到直线l的最大距离

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若恒成立;求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料

日期

昼夜温差

就诊人数

16

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的2组数据恰好是相邻两个月的概率

(2)若选取的是月与月的两组数据,请根据月份的数据,求出 关于的线性回归方程

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问2中所得线性回归方程是否理想

参考公式:

,

查看答案和解析>>

科目: 来源: 题型:

【题目】给定函数,若对于定义域中的任意,都有恒成立,则称函数为“爬坡函数”

1证明:函数是爬坡函数;

2若函数是爬坡函数,求实数m的取值范围;

3若对任意的实数b,函数都不是爬坡函数,求实数c的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在髙三的全体名学生中随机抽取名学生的体检表,并得到如图的频分布直方图.

(1)若直方中后四组的频数成等差数列,试估计全年级视力在以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到表中数据,根据表中的数据,能否有的把认为视力与学习成绩有关系?

3在(2查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步查他们良好的护眼,求在这人中任取人,恰好有人的年级名次在名的概率.

附:

查看答案和解析>>

同步练习册答案