科目: 来源: 题型:
【题目】某渔场鱼群的最大养殖量为吨,为保证鱼群的生长空间,实际的养殖量要小于,留出适当的空闲量,空闲量与最大养殖量的比值叫空闲率,已知鱼群的年增加量(吨)和实际养殖量(吨)与空闲率的乘积成正比(设比例系数).
(1)写出与的函数关系式,并指出定义域;
(2)求鱼群年增长量的最大值;
(3)当鱼群年增长量达到最大值时,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】
如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设
(1)写出关于的函数关系式,并指出的取值范围;
(2)试问多大时,改建后的绿化区域面积最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)
(1)将表示为的函数;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,记二次函数()与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为.
(1)求圆的方程;
(2)设P为圆上一点,若直线PA,PB分别交直线于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)满足f(x+y)=f(x)+f(y),当x>0时,有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判断函数f(x)的单调性,并利用定义加以证明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知随机变量X~N(μ,σ2),且其正态曲线在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72≤X≤88)=0.682 6.
(1)求参数μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目: 来源: 题型:
【题目】通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)。
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?
(以下数据供参考:, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com