科目: 来源: 题型:
【题目】某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取人,统计他们平均每天在家的时间(在家时间在小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
具有“宅”属性 | 不具有“宅”属性 | 总计 | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
总计 | 30 | 90 | 120 |
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过
的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个人的样本,其中男生和女生各多少人?
从人中随机选取人做进一步的调查,求选取的人至少有名女生的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴,轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线: ,焦点, 为坐标原点,直线(不垂直轴)过点且与抛物线交于两点,直线与的斜率之积为.
(1)求抛物线的方程;
(2)若为线段的中点,射线交抛物线于点,求证: .
查看答案和解析>>
科目: 来源: 题型:
【题目】公司从某大学招收毕业生,经过综合测试,录用了名男生和名女生,这名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在分以上者到甲部门工作;分以下者到乙部门工作,另外只有成绩高于分才能担任助理工作。
(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取人,再从这人中选人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选人,用表示所选人员中能担任助理工作的男生人数,写出的分布列,并求出的数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过作直线交椭圆于两点,使,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆的焦点在轴上.
(1)若椭圆的焦距为1,求椭圆的方程;
(2)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴于点,并且.证明:当变化时,点在定直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com