科目: 来源: 题型:
【题目】已知函数(其中).
(Ⅰ) 当时,若在其定义域内为单调函数,求的取值范围;
(Ⅱ) 当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,=2.71828…).
查看答案和解析>>
科目: 来源: 题型:
【题目】2009年推出一种新型家用轿车,购买时费用为万元,每年应交付保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.(1)设该辆轿车使用年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为,求的表达式;(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是件.每生产一件服装,成本增加100元,生产件服装的收入函数是,记,分别为每天生产件服装的利润和平均利润().
(1)当时,每天生产量为多少时,利润有最大值;
(2)每天生产量为多少时,平均利润有最大值,并求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了保护环境,2015年合肥市胜利工厂在市政府的大力支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为:且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(1)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com