相关习题
 0  256493  256501  256507  256511  256517  256519  256523  256529  256531  256537  256543  256547  256549  256553  256559  256561  256567  256571  256573  256577  256579  256583  256585  256587  256588  256589  256591  256592  256593  256595  256597  256601  256603  256607  256609  256613  256619  256621  256627  256631  256633  256637  256643  256649  256651  256657  256661  256663  256669  256673  256679  256687  266669 

科目: 来源: 题型:

【题目】某工厂每日生产某种产品吨,当日生产的产品当日销售完毕,产品价格随产品产量而变化,当时,每日的销售额(单位:万元)与当日的产量满足,当日产量超过吨时,销售额只能保持日产量吨时的状况.已知日产量为吨时销售额为万元,日产量为吨时销售额为万元.

1)把每日销售额表示为日产量的函数;

2)若每日的生产成本(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.(注:计算时取

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表

(Ⅰ)求出频率分布表中①和②位置上相应的数据;

(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5 组中用分层抽样的方法抽取6 名学生进行体能测试,求第3,4,5 组每组各应抽取多少名学生进行测试;

(Ⅲ)在(Ⅱ)的前提下,学校决定在6 名学生中随机抽取2 名学生进行引体向上测试,求第4 组中至少有一名学生被抽中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).

(1)求利润函数的函数关系式,并写出定义域;

(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产的一种产品的广告费用 (单位:万元)与销售额 (单位:万元)的统计数据如下表:

广告费用

销售额

(1)根据上述数据,求出销售额(万元)关于广告费用(万元)的线性回归方程;

(2)如果企业要求该产品的销售额不少于万元,则投入的广告费用应不少于多少万元?

(参考数值: .

回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求上的最小值

2)若存在两个不同的实数,使得,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校高一年级某次数学竞赛随机抽取名学生的成绩,分组为,统计后得到频率分布直方图如图所示:

(1)试估计这组样本数据的众数和中位数(结果精确到);

(2)年级决定在成绩中用分层抽样抽取人组成一个调研小组,对髙一年级学生课外学习数学的情况做一个调查,则在这三组分別抽取了多少人?

(3)现在要从(2)中抽取的人中选出正副个小组长,求成绩在中至少有人当选为正、副小组长的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题错误的是 ( )

A. 如果平面平面,那么平面内一定存在直线平行于平面

B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面内所有直线都垂直于平面

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若,试讨论关于的方程的解的个数,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次水下考古活动中,某一潜水员需潜水米到水底进行考古作业.其用氧量包含一下三个方面:下潜平均速度为/分钟,每分钟用氧量为升;水底作业时间范围是最少分钟最多分钟,每分钟用氧量为升;返回水面时,平均速度为/分钟,每分钟用氧量为.潜水员在此次考古活动中的总用氧量为.

1)如果水底作业时间是分钟,将表示为的函数;

2)若,水底作业时间为分钟,求总用氧量的取值范围;

3)若潜水员携带氧气升,请问潜水员最多在水下多少分钟(结果取整数)?

查看答案和解析>>

同步练习册答案