科目: 来源: 题型:
【题目】已知曲线
(1)若,过点的直线交曲线于两点,且,求直线的方程;
(2)若曲线表示圆时,已知圆与圆交于两点,若弦所在的直线方程为, 为圆的直径,且圆过原点,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: ()的两个焦点为, ,离心率为,点, 在椭圆上, 在线段上,且的周长等于.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过圆: 上任意一点作椭圆的两条切线和与圆交于点, ,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地政府调查了工薪阶层人的月工资收人,并根据调查结果画出如图所示的频率分布直方图,其中工资收人分组区间是.(单位:百元)
(1)为了了解工薪阶层对工资收人的满意程度,要用分层抽样的方法从调查的人中抽取人做电话询问,求月工资收人在内应抽取的人数;
(2)根据频率分布直方图估计这人的平均月工资为多少元.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线, 是焦点,直线是经过点的任意直线.
(Ⅰ)若直线与抛物线交于、两点,且(是坐标原点, 是垂足),求动点的轨迹方程;
(Ⅱ)若、两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com