科目: 来源: 题型:
【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若是“等方差数列”,在数列 是等差数列;
②是“等方差数列”;
③若是“等方差数列”,则数列为常)也是“等方差数列”;
④若既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?
附:
(Ⅱ) 估计用户对该公司的产品“满意”的概率;
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】一台机器由于使用时间较长,生产的零件有一些会有缺损,按不同转速生产出来的零件有缺损的统计数据如表所示:
(1)作出散点图;
(2)如果与线性相关,求出回归直线方程.
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,
,
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,圆的参数方程,以为极点, 轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为的药剂后,经过天该药剂在水中释放的浓度(毫克/升)满足,其中,当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.
(Ⅰ)如果投放的药剂质量为,试问自来水达到有效净化一共可持续几天?
(Ⅱ)如果投放的药剂质量为,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com