科目: 来源: 题型:
【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求证:EG⊥DF;
(2)求BE与平面EFGH所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[,+∞)上是增函数.
(1)已知f(x)=,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)= .
(1)判断并证明f(x)在(0,+∞)上的单调性;
(2)求当x<0时,函数的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆 ()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为.
⑴求椭圆的方程:
⑵已知为椭圆的左端点,问: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如下图,在多面体中,⊥平面,,且是边长为2的等边三角形,,与平面所成角的正弦值为.
(1)若是线段的中点,证明:⊥面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆(﹥﹥0)的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com