相关习题
 0  256600  256608  256614  256618  256624  256626  256630  256636  256638  256644  256650  256654  256656  256660  256666  256668  256674  256678  256680  256684  256686  256690  256692  256694  256695  256696  256698  256699  256700  256702  256704  256708  256710  256714  256716  256720  256726  256728  256734  256738  256740  256744  256750  256756  256758  256764  256768  256770  256776  256780  256786  256794  266669 

科目: 来源: 题型:

【题目】已知函数x = 2处的切线与直线垂直

(Ⅰ)求函数f (x)的单调区间;

(Ⅱ)若存在,使成立,求m的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,它在点处的切线为直线

(Ⅰ)求直线的直角坐标方程;

(Ⅱ)已知点为椭圆上一点,求点到直线的距离的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在 人或 人以下,每人需交费用为 元;若旅行团人数多于 人,则给予优惠:每多 人,人均费用减少 元,直到达到规定人数 人为止.旅行社需支付各种费用共计 元.

写出每人需交费用 关于人数 的函数;

旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的, 的中点.

)设上的一点,且,求的大小;

)当时,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】对某校高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

1)求出表中及图中的值;

2)若该校高二学生有人,试估计该校高二学生参加社区服务的次数在区间内的人数;

3)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至多一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】届夏季奥林匹克运动会将于 2016 8 5 21 日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据( 单位: 枚).

伦敦

北京

届雅典

届悉尼

届亚特兰大

中国

俄罗斯

(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图, 并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度( 不要求计算出具体数值, 给出结论即可);

(2)甲、 乙、 丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多( 假设两国代表团获得的金牌数不会相等) 规定甲、 乙、 丙必须在两个代表团中选一个, 已知甲、 乙猜中国代表团的概率都为 丙猜中国代表团的概率为 三人各自猜哪个代表团的结果互不影响.现让甲、 乙、 丙各猜一次, 设三人中猜中国代表团的人数为,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时,

1求证: ,且当 时,有

2判断 R上的单调性;

3设集合AB,若A∩B,求的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的反函数为

(1)求的解析式,并指出的定义域;

(2)判断的奇偶性,并说明理由;

(3)设,解关于的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若函数 的图象在点 处的切线的倾斜角为 ,对于任意的,函数在区间上总不是单调函数, 的取值范围;

(3)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如下数据:

手机品牌 型号

I

II

III

IV

V

甲品牌(个)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手机品牌 红包个数

非优

合计

甲品牌(个)

乙品牌(个)

合计

(1)如果抢到红包个数超过5个的手机型号为“优”,否则为“非优”,请完成上述2×2列联表,据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?

(2)如果不考虑其他因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.

①求在型号I被选中的条件下,型号II也被选中的概率;

②以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.

下面临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中.

查看答案和解析>>

同步练习册答案