科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,它在点处的切线为直线.
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)已知点为椭圆上一点,求点到直线的距离的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义区间(a,b),[a,b),(a,b],[a,b]的长度均为,多个区间并集的长度为各区间长度之和,例如,(1,2) [3,5)的长度d=(2-1)+(5-3)=3. 用[x]表示不超过x的最大整数,记{x}=x-[x],其中.设, ,当时,不等式解集区间的长度为,则的值为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数是定义在R上的奇函数,其中为自然对数的底数.
(1)求实数的值;
(2)若存在,使得不等式成立,求实数的取值范围;
(3)若函数在上不存在最值,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题12分)根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
]
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大,最大月收益是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,.
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图象在点处的切线方程;
(3)已知不等式恒成立,若方程恰有两个不等实根,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com