科目: 来源: 题型:
【题目】如图所示是某企业2010年至2016年污水净化量(单位: 吨)的折线图.
注: 年份代码1-7分别对应年份2010-2016.
(1)由折线图看出,可用线性回归模型拟合和的关系,请用相关系数加以说明;
(2)建立关于的回归方程,预测年该企业污水净化量;
(3)请用数据说明回归方程预报的效果.
附注: 参考数据:;
参考公式:相关系数,回归方程中斜率和截距的最小;
二乘法估汁公式分别为;
反映回归效果的公式为:,其中越接近于,表示回归的效果越好.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正三棱柱ABCA1B1C1中,F,F1分别是AC,A1C1的中点.
求证:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目: 来源: 题型:
【题目】某权威机构发布了2014年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是).
(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);
(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.
①请根据上述表格中的统计数据填写下面列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?
②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.
参考公式:,其中.
参考数据:
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
3.841 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.
(1)证明:AC⊥HD′;
(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′ABCFE的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某少数民族的刺绣有着悠久的历史,下图为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(1)求出;
(2)利用合情推理的“归纳推理思想”归纳出与的关系式,
(3)根据你得到的关系式求的表达式
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线与函数的图像相切于点.
(1)求实数的值;
(2)证明除切点外,直线总在函数的图像的上方;
(3)设是两两不相等的正实数,且成等比数列,试判断与的大小关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com