相关习题
 0  256745  256753  256759  256763  256769  256771  256775  256781  256783  256789  256795  256799  256801  256805  256811  256813  256819  256823  256825  256829  256831  256835  256837  256839  256840  256841  256843  256844  256845  256847  256849  256853  256855  256859  256861  256865  256871  256873  256879  256883  256885  256889  256895  256901  256903  256909  256913  256915  256921  256925  256931  256939  266669 

科目: 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

科目: 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.

(1)求抛物线的标准方程;

(2)设直线轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形与正三角形的边长均为2,它们所在平面互相垂直, 平面,且.

(Ⅰ)求证: 平面

(Ⅱ)若,求几何体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知图①②都是表示输出所有立方小于1 000的正整数的程序框图,则图中应分别补充的条件为(  )

   ①      ②

A. ①n3≥1 000? ②n3<1 000?

B. ①n3≤1 000? ②n3≥1 000?

C. ①n3<1 000? ②n3≥1 000?

D. ①n3<1 000? ②n3<1 000?

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;

(2)设曲线轴的一个交点的坐标为,经过点作斜率为1的直线, 交曲线两点,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(Ⅱ)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价(元/吨)与采购量(吨)之间函数关系的图像如图中的折线段所示(不包含端点但包含端点).

(1)求之间的函数关系式;

(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知指数函数

(1)函数过定点,求的值;

(2)当时,求函数的最小值

(3)是否存在实数,使得(2)中关于的函数的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)当时,函数的两个极值点为 ,且.求证: .

查看答案和解析>>

同步练习册答案