相关习题
 0  256746  256754  256760  256764  256770  256772  256776  256782  256784  256790  256796  256800  256802  256806  256812  256814  256820  256824  256826  256830  256832  256836  256838  256840  256841  256842  256844  256845  256846  256848  256850  256854  256856  256860  256862  256866  256872  256874  256880  256884  256886  256890  256896  256902  256904  256910  256914  256916  256922  256926  256932  256940  266669 

科目: 来源: 题型:

【题目】函数 (为实数).

(1)若,求证:函数上是增函数;

(2)求函数上的最小值及相应的的值;

(3)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,若存在实数使得不等式成立,求实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处.

1)求此时该外国船只与岛的距离;

2)观测中发现,此外国船只正以每小时海里的速度沿正南方向航行,为了将该船拦截在离海里处,不让其进入海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在 上的函数 若同时满足:①存在 ,使得对任意的 ,都有 的图象存在对称中心.则称 函数.已知函数 ,则以下结论一定正确的是

A. 都是 函数 B. 函数, 不是 函数

C. 不是 函数, 函数 D. 都不是 函数

查看答案和解析>>

科目: 来源: 题型:

【题目】从5名男生和4名女生中选出4人去参加座谈会,问:

(1)如果4人中男生和女生各选2人,有多少种选法?

(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?

(3)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中, 底面,且 分别是的中点.

(1)求证:平面平面

(2)求二面角的平面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告知大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;

(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分,

请你从平均分和方差的角度来分析两个班的选手的情况;

主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分

布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,侧面底面为正三角形,,点分别为线段的中点,分别为线段上一点,且.

(1)确定点的位置,使得平面

(2)试问:直线上是否存在一点,使得平面与平面所成锐二面角的大小为,若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙同学参加学校“一站到底”闯关活动,活动规则:①依次闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10分,闯第二关得20分,闯第三关得30分,一关都没过则没有得分.已知甲每次闯关成功的概率为,乙每次闯关成功的概率为. 

(Ⅰ)设乙的得分总数为,求得分布列和数学期望;

(Ⅱ)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中, 平面,底面为直角梯形, ,且为线段上的一动点.

(Ⅰ)若为线段的中点,求证: 平面

(Ⅱ)当直线与平面所成角小于,求长度的取值范围.

查看答案和解析>>

同步练习册答案