相关习题
 0  256750  256758  256764  256768  256774  256776  256780  256786  256788  256794  256800  256804  256806  256810  256816  256818  256824  256828  256830  256834  256836  256840  256842  256844  256845  256846  256848  256849  256850  256852  256854  256858  256860  256864  256866  256870  256876  256878  256884  256888  256890  256894  256900  256906  256908  256914  256918  256920  256926  256930  256936  256944  266669 

科目: 来源: 题型:

【题目】已知函数的图象在点处有相同的切线.

(Ⅰ)若函数的图象有两个交点,求实数的取值范围;

(Ⅱ)若函数有两个极值点 ,且,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 )的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,斜率为的直线与椭圆交于 两点,点在直线的左上方.若,且直线 分别与轴交于 点,求线段的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.

(1)完成下列 列联表:

喜欢旅游

不喜欢旅游

估计

女性

男性

合计

(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.

附:

参考公式:

,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】袋中有个黄色、个白色的乒乓球,做不放回抽样,每次任取个球,取次,则关于事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率说法正确的是( )

A. 事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于

B. 事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于

C. 事件“直到第二次才取到黄色球”的概率等于,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于

D. 事件“直到第二次才取到黄色球”的概率等于,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】女共名同学从左至右排成一排合影,要求左端排男同学,右端排女同学,且女同学至多有人排在一起,则不同的排法种数为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求的值;

(2)讨论方程的实数根的情况.

查看答案和解析>>

科目: 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学高二年级开设五门大学先修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理,商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:

其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.

(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;

(2)从选出的10名学生中随机抽取3人,记为选择线性代数人数与选择微积分人数差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案