相关习题
 0  256761  256769  256775  256779  256785  256787  256791  256797  256799  256805  256811  256815  256817  256821  256827  256829  256835  256839  256841  256845  256847  256851  256853  256855  256856  256857  256859  256860  256861  256863  256865  256869  256871  256875  256877  256881  256887  256889  256895  256899  256901  256905  256911  256917  256919  256925  256929  256931  256937  256941  256947  256955  266669 

科目: 来源: 题型:

【题目】某厂生产某种产品的月固定成本为10(万元),每生产件,需另投入成本为(万元).当月产量不足30件时, (万元);当月产量不低于30件时, (万元).因设备问题,该厂月生产量不超过50件.现已知此商品每件售价为5万元,且该厂每个月生产的商品都能当月全部销售完.

(1)写出月利润(万元)关于月产量(件)的函数解析式;

(2)当月产量为多少件时,该厂所获月利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线过点,其倾斜角为,以原点为极点,以正半轴为极轴建立极坐标,并使得它与直角坐标系有相同的长度单位,圆的极坐标方程为.

(1)求直线的参数方程和圆的普通方程;

(2)设圆与直线交于点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1是否存在实数使函数是奇函数?并说明理由;

21的条件下,当 恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知处的极值为0.

(1)求常数的值;

(2)求的单调区间;

(3)方程在区间上有三个不同的实根时,求实数的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关:

合计

认可

不认可

合计

附:参考数据:(参考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求函数处的切线方程;

(Ⅱ)令,求函数的极值;

(Ⅲ)若,正实数 满足,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程和相关系数,分别得到以下四个结论:

其中,一定不正确的结论序号是( )

A. ②③ B. ①④ C. ①②③ D. ②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,直线是函数图象的一条对称轴.

(1)求的值,并求的解析式;

(2)若关于的方程在区间上有且只有一个实数解,求实数的取值范围;

(3)已知函数的图象是由图象上的所有点的横坐标伸长到原来的2倍,然后再向左平移个单位得到,若 ,求的值.

查看答案和解析>>

同步练习册答案