相关习题
 0  256777  256785  256791  256795  256801  256803  256807  256813  256815  256821  256827  256831  256833  256837  256843  256845  256851  256855  256857  256861  256863  256867  256869  256871  256872  256873  256875  256876  256877  256879  256881  256885  256887  256891  256893  256897  256903  256905  256911  256915  256917  256921  256927  256933  256935  256941  256945  256947  256953  256957  256963  256971  266669 

科目: 来源: 题型:

【题目】某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如下柱状图:

(1)从样本中任意选取2名学生,求恰好有一名学生的打分不低于4分的概率;

(2)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记表示两人打分之和,求的分布列和.

查看答案和解析>>

科目: 来源: 题型:

【题目】方程有两个不等的负根, 方程无实根,若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 (为实常数).

(1)若 ,求的单调区间;

(2)若,且,求函数上的最小值及相应的值;

(3)设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为(其中为参数),曲线 ,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线)与曲线 分别交于 两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)已知函数是自然对数的底数, .

1)求函数的单调递增区间;

2)若为整数, ,且当时, 恒成立,其中的导函数,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面为直角梯形, 的中点,平面点.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.

(1)求椭圆的方程;

(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.

(1)试求选出种商品中至少有一种是家电的概率;

(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求的单调区间;

(2)设 是曲线图象上的两个相异的点,若直线的斜率恒成立,求实数的取值范围;

(3)设函数有两个极值点 ,且,若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案