相关习题
 0  256847  256855  256861  256865  256871  256873  256877  256883  256885  256891  256897  256901  256903  256907  256913  256915  256921  256925  256927  256931  256933  256937  256939  256941  256942  256943  256945  256946  256947  256949  256951  256955  256957  256961  256963  256967  256973  256975  256981  256985  256987  256991  256997  257003  257005  257011  257015  257017  257023  257027  257033  257041  266669 

科目: 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,求:

(Ⅰ)过点与原点距离为2的直线的方程;

(Ⅱ)过点与原点距离最大的直线的方程,最大距离是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某研究型学习小组调查研究中学生使用智能手机对学习的影响.部分统计数据如下表:

参考数据:

参考公式: ,其中

(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?

()研究小组将该样本中使用智能手机且成绩优秀的4位同学记为组,不使用智能手机且成绩优秀的8位同学记为组,计划从组推选的2人和组推选的3人中,随机挑选两人在学校升旗仪式上作国旗下讲话分享学习经验.求挑选的两人恰好分别来自两组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过的动圆恒与轴相切,设切点为是该圆的直径.

(Ⅰ)求点轨迹的方程;

(Ⅱ)当不在y轴上时,设直线与曲线交于另一点,该曲线在处的切线与直线交于点.求证: 恒为直角三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】给定椭圆C: (a>b>0).称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到点F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为实常数.

(),当时,求函数的单调区间;

()时,直线与函数的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.

求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1

(1)求证:AB1⊥平面A1BC1
(2)若D为B1C1的中点,求AD与平面A1BC1所成的角.

查看答案和解析>>

科目: 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中 .

查看答案和解析>>

同步练习册答案