科目: 来源: 题型:
【题目】已知椭圆C: (a>b>0)的焦距为,且椭圆C过点A(1, ),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若O是坐标原点,不经过原点的直线L:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线L的斜率k;
(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=sin(2ωx+ )(其中ω>0),且f(x)的图象在y轴右侧的第一个最高点的横坐标是 .
(1)求y=f(x)的最小正周期及对称轴;
(2)若x∈ ,函数 ﹣af(x)+1的最小值为0.求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数的最小正周期为.
(1)求的值;
(2)将函数的图像向左平移个单位,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图像,求函数的单调递减区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的单调递增区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.
(1)求抛物线的方程;
(2)设是抛物线上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的定义域为,若函数满足:对于给定的 ,存在,使得成立,那么称具有性质.
(1)函数 是否具有性质?说明理由;
(2)已知函数具有性质,求的最大值;
(3)已知函数的定义域为,满足,且的图像是一条连续不断的曲线,问:是否存在正整数n,使得函数具有性质,若存在,求出这样的n的取值集合;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com