相关习题
 0  256919  256927  256933  256937  256943  256945  256949  256955  256957  256963  256969  256973  256975  256979  256985  256987  256993  256997  256999  257003  257005  257009  257011  257013  257014  257015  257017  257018  257019  257021  257023  257027  257029  257033  257035  257039  257045  257047  257053  257057  257059  257063  257069  257075  257077  257083  257087  257089  257095  257099  257105  257113  266669 

科目: 来源: 题型:

【题目】是等边三角形,边长为4, 边的中点为,椭圆 为左、右两焦点,且经过两点。

(1)求该椭圆的标准方程;

(2)过点轴不垂直的直线交椭圆于 两点,求证:直线的交点在一条定直线上.

查看答案和解析>>

科目: 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数).

(1)若函数在定义域上是单调函数,求实数的取值范围;

(2)求函数的极值点;

(3)令 ,设 是曲线上相异三点,其中.求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2﹣2x|x﹣a|(其中a∈R).
(1)当a=1时,求函数f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值为﹣1,求a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某生态园将一块三角形地的一角开辟为水果园,已知角 的长度均大于200米,现在边界处建围墙,在处围竹篱笆.

(1)若围墙总长度为200米,如何可使得三角形地块面积最大?

(2)已知竹篱笆长为米, 段围墙高1米, 段围墙高2米,造价均为每平方米100元,若,求围墙总造价的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题(满分12)的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.

(1)x的值,并判断哪组学生成绩更稳定;

(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,已知在菱形中, 的中点,现将四边形沿折起至,如图2.

(1)求证:

(2)若二面角的大小为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对[2555]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

[2530)

120

0.6

第二组

[3035)

195

第三组

[3540)

100

0.5

第四组

[4045)

0.4

第五组

[4550)

30

0.3

第六组

[5055]

15

0.3

(1)补全频率分布直方图并求 的值;

(2)从年龄段在[4050)低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[4045)岁的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案