科目: 来源: 题型:
【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:
(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用和设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 为椭圆的右焦点, , .
(Ⅰ)求椭圆的方程;
(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过且平行于的直线与直线交于点.求证: .
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 令Tn= ,称Tn为数列a1 , a2 , …,an的“理想数”,已知数列a1 , a2 , …,a502的“理想数”为2012,那么数列2,a1 , a2 , …,a502的“理想数”为( )
A.2010
B.2011
C.2012
D.2013
查看答案和解析>>
科目: 来源: 题型:
【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数.(单位:公里)分为3类,即类:,类:, 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:
类型 | 类 | 类 | 类 |
已行驶总里程不超过10万公里的车辆数 | 10 | 40 | 30 |
已行驶总里程超过10万公里的车辆数 | 20 | 20 | 20 |
(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;
(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.
①求的值;
②如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列为公差不为的等差数列, 为前项和, 和的等差中项为,且.令数列的前项和为.
(1)求及;
(2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在四棱锥中, 平面是的中点, 是上的点且为边上的高.
(1)证明: 平面;
(2)若,求三棱锥的体积;
(3)在线段上是否存在这样一点,使得平面?若存在,说出点的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com