相关习题
 0  257087  257095  257101  257105  257111  257113  257117  257123  257125  257131  257137  257141  257143  257147  257153  257155  257161  257165  257167  257171  257173  257177  257179  257181  257182  257183  257185  257186  257187  257189  257191  257195  257197  257201  257203  257207  257213  257215  257221  257225  257227  257231  257237  257243  257245  257251  257255  257257  257263  257267  257273  257281  266669 

科目: 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(l)求证:

(2)求证:

(3)设,求四面体的体积

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若函数在区间上单调递增,求的取值范围;

(2)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式=a1a4﹣a2a3; 函数g(θ)=(其中0≤θ≤).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)当k=2时,求炮的射程;
(2)求炮的最大射程;
(3)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以其中它?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 ,斜率为的直线过点,且和以为圆相切.

(1)求圆的方程;

(2)在圆上是否存在点,使得,若存在,求出所有的点的坐标;若不存在说明理由;

(3)若不过的直线与圆交于 两点,且满足 的斜率依次为等比数列,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)当a=0时,求(UA)∩B;
(2)若(UA)∩B恰有2个元素,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照 ,…, 分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;

(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);

(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=4x﹣2x+1+3,当x∈[﹣2,1]时,f(x)的最大值为m,最小值为n,
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自变量x的取值集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平行四边形的三个顶点的坐标为 .

(1)求平行四边形的顶点的坐标;

(2)在中,求边上的高所在直线方程;

(3)求四边形的面积.

查看答案和解析>>

同步练习册答案