相关习题
 0  257144  257152  257158  257162  257168  257170  257174  257180  257182  257188  257194  257198  257200  257204  257210  257212  257218  257222  257224  257228  257230  257234  257236  257238  257239  257240  257242  257243  257244  257246  257248  257252  257254  257258  257260  257264  257270  257272  257278  257282  257284  257288  257294  257300  257302  257308  257312  257314  257320  257324  257330  257338  266669 

科目: 来源: 题型:

【题目】设椭圆 的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为4.

(1)求椭圆的标准方程;

(2)若直线交椭圆 两点, )为椭圆上一点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= ,x∈R,a∈R.
(1)a=1时,求证:f(x)在区间(﹣∞,0)上为单调增函数;
(2)当方程f(x)=3有解时,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分10分)选修4—4:坐标系与参数方程

在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.

1)求圆C的极坐标方程;

2)直线的极坐标方程是,射线与圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知椭圆的焦距为 ,直线被椭圆 截得的弦长为 .

(1)求椭圆 的方程;

(2)设点是椭圆 上的动点,过原点引两条射线与圆分别相切,且的斜率存在. ①试问 是否为定值?若是,求出该定值,若不是,说明理由;

②若射线与椭圆 分别交于点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 恰有两个极值点,且.

(1)求实数 的取值范围;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:

若将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?

(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.

(i)共有多少种不同的抽取方法?

(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆: 上的任一点到焦点的距离最大值为3,离心率为

(1)求椭圆的标准方程;

(2)若为曲线上两点, 为坐标原点,直线 的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 ,设直线与椭圆交于不同两点,且.若点满足,则=______________.

查看答案和解析>>

同步练习册答案