科目: 来源: 题型:
【题目】直角坐标系中,曲线与轴负半轴交于点,直线与相切于, 为上任意一点, 为在上的射影, 为的中点.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)轨迹与轴交于,点为曲线上的点,且, ,试探究三角形的面积是否为定值,若为定值,求出该值;若非定值,求其取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(为参数, ),直线,若直线与曲线C相交于A,B两点,且.
(Ⅰ)求;
(Ⅱ)若M,N为曲线C上的两点,且,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=4x﹣a2x+1+a+1,a∈R.
(1)当a=1时,解方程f(x)﹣1=0;
(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;
(3)若函数f(x)有零点,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log ,当x∈[ , ]时,不等式 f(x)≥g(x)有解,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查人,并将调查情况进行整理后制成下表:
年龄(岁) | |||||
频数 | |||||
赞成人数 |
(1)世界联合国卫生组织规定: 岁为青年, 为中年,根据以上统计数据填写以下列联表:
青年人 | 中年人 | 合计 | |
不赞成 | |||
赞成 | |||
合计 |
(2)判断能否在犯错误的概率不超过的前提下,认为赞成“车柄限行”与年龄有关?
附: ,其中
独立检验临界值表:
(3)若从年龄的被调查中各随机选取人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com