相关习题
 0  257287  257295  257301  257305  257311  257313  257317  257323  257325  257331  257337  257341  257343  257347  257353  257355  257361  257365  257367  257371  257373  257377  257379  257381  257382  257383  257385  257386  257387  257389  257391  257395  257397  257401  257403  257407  257413  257415  257421  257425  257427  257431  257437  257443  257445  257451  257455  257457  257463  257467  257473  257481  266669 

科目: 来源: 题型:

【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层

抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):

高一年级

高二年级

高三年级

(1)试估计该校高三年级的教师人数 ;

(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;

(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断的大小. (结论不要求证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目: 来源: 题型:

【题目】先将函数y=f(x)的图象向左平移 个单位,然后再将所得图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,最后再将所得图象向上平移1个单位,得到函数y=sinx的图象.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于点M( ,2)对称,求函数y=g(x)在[0, ]上的最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,O是坐标原点,两定点A,B满足| |=| |= =2,则点集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的区域的面积是

查看答案和解析>>

科目: 来源: 题型:

【题目】关于x的方程x2+(a2﹣1)x+a﹣2=0的两根满足(x1﹣1)(x2﹣1)<0,则a的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】是各项均不相等的数列, 为它的前项和,满足.

(1)若,且成等差数列,求的值;

(2)若的各项均不相等,问当且仅当为何值时, 成等差数列?试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为常数).

(1)当时,求的单调区间;

(2)若在区间的极大值、极小值各有一个,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 =(cosx,cosx), =(sinx,﹣cosx),记函数f(x)=2 +1,其中x∈R.
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的图象的对称中心的坐标;
(Ⅱ)若α∈(0, ),且f( )= ,求cos2α的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, .

(1)若的中点,求证: 平面

(2)若,求证:平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=sin2 + sinωx﹣ (ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(
A.(0, ]
B.(0, ]∪[ ,1)
C.(0, ]
D.(0, ]∪[ ]

查看答案和解析>>

同步练习册答案