相关习题
 0  257321  257329  257335  257339  257345  257347  257351  257357  257359  257365  257371  257375  257377  257381  257387  257389  257395  257399  257401  257405  257407  257411  257413  257415  257416  257417  257419  257420  257421  257423  257425  257429  257431  257435  257437  257441  257447  257449  257455  257459  257461  257465  257471  257477  257479  257485  257489  257491  257497  257501  257507  257515  266669 

科目: 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.
(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+log3n=log3bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,求:
(1)若l1⊥l2 , 求m的值;
(2)若l1∥l2 , 求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB边上的高线所在的直线方程;
(2)求三角形ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面给出四个命题的表述: ①直线(3+m)x+4y﹣3+3m=0(m∈R)恒过定点(﹣3,3);
②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,则b∈[﹣ ];
④已知圆C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.
其中表述正确的是( (填上所有正确结论对应的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}满足:a1=m(m为正整数),an+1= 若a6=1,则m所有可能的取值的个数为

查看答案和解析>>

同步练习册答案