相关习题
 0  257346  257354  257360  257364  257370  257372  257376  257382  257384  257390  257396  257400  257402  257406  257412  257414  257420  257424  257426  257430  257432  257436  257438  257440  257441  257442  257444  257445  257446  257448  257450  257454  257456  257460  257462  257466  257472  257474  257480  257484  257486  257490  257496  257502  257504  257510  257514  257516  257522  257526  257532  257540  266669 

科目: 来源: 题型:

【题目】已知函数f(x)=lg(mx2+mx+1),若此函数的定义域为R,则实数m的取值范围是;若此函数的值域为R,则实数m的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关.”出现这种现象是大家受法不责众的“从众”心理影响,从而不顾及交通安全.某校对全校学生过马路方式进行调查,在所有参与调查的人中,“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”人数如表所示:

跟从别人闯红灯

从不闯红灯

带头闯红灯

男生

800

450

200

女生

100

150

300


(1)在所有参与调查的人中,用分层抽样的方法抽取n人,已知“跟从别人闯红灯”的人中抽取45人,求n的值;
(2)在“带头闯红灯”的人中,将男生的200人编号为1,2,…,200;将女生的300人编号为201,202,…,500,用系统抽样的方法抽取4人参加“文明交通”宣传活动,若抽取的第一个人的编号为100,把抽取的4人看成一个总体,从这4人中任选取2人,求这两人均是女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】若数据x1 , x2 , x3 , x4 , x5的方差为3,则数据2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率 ,左右焦点分别为 是椭圆在第一象限上的一个动点,圆 的延长线, 的延长线以及线段 都相切, 为一个切点.

(1)求椭圆方程;

(2)设 ,过 且不垂直于坐标轴的动点直线 交椭圆于 两点,若以 为邻边的平行四边形是菱形,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷,卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解,如图,是解决这类问题的程序框图,若输入,则输出的结果为( )

A. 120 B. 121 C. 112 D. 113

查看答案和解析>>

科目: 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足SA且S∩B≠的集合S的个数是(
A.57
B.56
C.49
D.8

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a为正的常数,函数f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函数f(x)的单调递增区间;
(2)设g(x)= ,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.
(Ⅰ)证明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小为 ,求∠BDC的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= x3+ax2+bx+ (a,b是实数),且f′(2)=0,f(﹣1)=0.
(1)求实数a,b的值;
(2)当x∈[﹣1,t]时,求f(x)的最大值g(t)的表达式.

查看答案和解析>>

同步练习册答案