科目: 来源: 题型:
【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式f(x)= ﹣ (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为: (为参数).
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)若用代换曲线的普通方程中的得到曲线的方程,若分别是曲线和曲线上的动点,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下图为某市2017年2月28天的日空气质量指数折线图.
由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);
(2)研究人员发现,空气质量指数测评中与燃烧排放的两个项目存在线性相关关系,以为单位,下表给出与的相关数据:
求关于的回归方程,并估计当排放量是时, 的值.
(用最小二乘法求回归方程的系数是, )
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意 都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:
时间t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= .
( I)判断f(x)的奇偶性;
( II)求证:f(x)+f( )为定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com