相关习题
 0  257382  257390  257396  257400  257406  257408  257412  257418  257420  257426  257432  257436  257438  257442  257448  257450  257456  257460  257462  257466  257468  257472  257474  257476  257477  257478  257480  257481  257482  257484  257486  257490  257492  257496  257498  257502  257508  257510  257516  257520  257522  257526  257532  257538  257540  257546  257550  257552  257558  257562  257568  257576  266669 

科目: 来源: 题型:

【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同的四点,这四点在上排列顺次为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层

抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):

高一年级

高二年级

高三年级

(1)试估计该校高三年级的教师人数 ;

(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;

(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断的大小. (结论不要求证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数在区间上的最大值;

(2)若是函数图像上不同的三点,且,试判断之间的大小关系,并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若二面角大小为,设,试确定的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知命题p:x∈R,使2x>3x;命题q:x(0, ),tanx>sinx下列是真命题的是(
A.(¬p)∧q
B.(¬p)∨(¬q)
C.p∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目: 来源: 题型:

【题目】己知集合M={﹣1,1,2,4}N={0,1,2}给出下列四个对应法则,其中能构成从M到N的函数是(
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 )的左焦点与抛物线的焦点重合,直线与以原点为圆心,以椭圆的离心率为半径的圆相切.

(Ⅰ)求该椭圆的方程;

(Ⅱ)过点的直线交椭圆于 两点,线段的中点为 的垂直平分线与轴和轴分别交于 两点.记的面积为 的面积为.问:是否存在直线,使得,若存在,求直线的方程,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于 两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按1.0元/度收费.

(Ⅰ)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求 的值;

(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数).

(Ⅰ)若,恒有成立,求实数的取值范围;

(Ⅱ)若函数有两个相异极值点 ,求证:

查看答案和解析>>

同步练习册答案