科目: 来源: 题型:
【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为(为参数).
(1)求的直角坐标方程;
(2)与交于不同的四点,这四点在上排列顺次为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层
抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):
高一年级 | ||||||||
高二年级 | ||||||||
高三年级 |
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断与的大小. (结论不要求证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形, , ,平面底面, 为的中点, 是棱上的点, , , .
(Ⅰ)求证:平面平面;
(Ⅱ)若二面角大小为,设,试确定的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题p:x∈R,使2x>3x;命题q:x(0, ),tanx>sinx下列是真命题的是( )
A.(¬p)∧q
B.(¬p)∨(¬q)
C.p∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目: 来源: 题型:
【题目】己知集合M={﹣1,1,2,4}N={0,1,2}给出下列四个对应法则,其中能构成从M到N的函数是( )
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: ()的左焦点与抛物线的焦点重合,直线与以原点为圆心,以椭圆的离心率为半径的圆相切.
(Ⅰ)求该椭圆的方程;
(Ⅱ)过点的直线交椭圆于, 两点,线段的中点为, 的垂直平分线与轴和轴分别交于, 两点.记的面积为, 的面积为.问:是否存在直线,使得,若存在,求直线的方程,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)若直线与曲线相交于, 两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按1.0元/度收费.
(Ⅰ)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;
(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求, 的值;
(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com