科目: 来源: 题型:
【题目】下列说法中,正确的个数为( )
(1)
(2)已知向量 =(6,2)与 =(﹣3,k)的夹角是钝角,则k的取值范围是k<0
(3)若向量 能作为平面内所有向量的一组基底
(4)若 ,则 在 上的投影为 .
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数.
(Ⅰ)当时,求函数的极小值;
(Ⅱ)设定义在上的函数在点处的切线方程为:,当时,若在内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某海滨浴场每年夏季每天的海浪高度y(米)是时间x(0≤x≤24,单位:小时)的函数,记作y=f(x),下表是每年夏季每天某些时刻的浪高数据:
x(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)经观察发现可以用三角函数y=Acosωx+b对这些数据进行拟合,求函数f(x)的表达式;
(2)浴场规定,每天白天当海浪高度高于1.25米时,才对冲浪爱好者开放,求冲浪者每天白天可以在哪个时段到该浴场进行冲浪运动?
查看答案和解析>>
科目: 来源: 题型:
【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】运货卡车以每小时x千米的速度匀速行驶120千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时12元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=alnx+ ,曲线f(x)在点(1,f(1))处的切线平行于x轴.
(1)求f(x)的最小值;
(2)比较f(x)与 的大小;
(3)证明:x>0时,xexlnx+ex>x3 .
查看答案和解析>>
科目: 来源: 题型:
【题目】
如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(Ⅰ)求证:圆心O在直线AD上;
(Ⅱ)求证:点C是线段GD的中点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A(2sinx,﹣cosx)、B( cosx,2cosx),记f(x)= .
(1)若x0是函数y=f(x)﹣1的零点,求tanx0的值;
(2)求f(x)在区间[ , ]上的最值及对应的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com