科目: 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:,试估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为该校学生的每周平均体育运动时间与性别有关?
男生 | 女生 | 合计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
合计 | 300 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2 ,求四边形EBCF的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点为,且.
(1)求椭圆的标准方程;
(2)圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,,当,且满足时,求的面积的取值范围.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
查看答案和解析>>
科目: 来源: 题型:
【题目】“累计净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为时对颗粒物的累计净化量(单位:克).根据国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:
累计净化量(克) | 12以上 | |||
等级 |
已知某批空气净化器共台,其累计净化量都分布在区间内,为了解其质量,随机抽取了台净化器作为样本进行估计,按照,,,,均匀分组,其中累计净化量在的所有数据有:,,,,和,并绘制了如下频率分布直方图.
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为的空气净化器有多少台?
(3)从累计净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着国民生活水平的提高,利用长假旅游的人越来越多.某公司统计了2012到2016年五年间本公司职员每年春节期间外出旅游的家庭数,具体统计数据如下表所示:
(Ⅰ)从这5年中随机抽取两年,求外出旅游的家庭数至少有1年多于20个的概率;
(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程,判断它们之间是正相关还是负相关;并根据所求出的直线方程估计该公司2019年春节期间外出旅游的家庭数.
参考公式:,
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线C: (a>0,b>0)过点A(1,0),且离心率为
(1)求双曲线C的方程;
(2)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com