相关习题
 0  257701  257709  257715  257719  257725  257727  257731  257737  257739  257745  257751  257755  257757  257761  257767  257769  257775  257779  257781  257785  257787  257791  257793  257795  257796  257797  257799  257800  257801  257803  257805  257809  257811  257815  257817  257821  257827  257829  257835  257839  257841  257845  257851  257857  257859  257865  257869  257871  257877  257881  257887  257895  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直线坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)直线的普通方程和曲线的参数方程;

(2)设点上, 处的切线与直线垂直,求的直角坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在[﹣2,2]上的函数y=f(x)和y=g(x),其图象如图所示:给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根 ②方程g[f(x)]=0有且仅有3个根
③方程f[f(x)]=0有且仅有5个根 ④方程g[g(x)]=0有且仅有4个根
其中正确命题的序号(

A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目: 来源: 题型:

【题目】小明家订了一份报纸,暑假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);

(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若的极值点,求的极大值;

(2)求实数的范围,使得恒成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三棱锥中, 的中点, 的中点,且为正三角形.

(1)求证: 平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,圆的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的方程;

(2)过点作互相垂直的两条直线,且椭圆两点, 直线交圆两点, 的中点, 的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知F1 , F2为椭圆C: (a>b>0)的左、右焦点,M为椭圆C的上顶点,且|MF1|=2,右焦点与右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,且直线OA,OB的斜率kOA , kOB满足kOAkOB=﹣ ,求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】双流中学校运动会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位: ),身高在175以上(包括175)定义为“高个子”,身高在175以 下(不包括175 )定义为“非高个子”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?

(2)若从身高180以上(包括180)的志愿者中选出男、女各一人,求这两人身高相差5以上的概率.

查看答案和解析>>

同步练习册答案