相关习题
 0  257705  257713  257719  257723  257729  257731  257735  257741  257743  257749  257755  257759  257761  257765  257771  257773  257779  257783  257785  257789  257791  257795  257797  257799  257800  257801  257803  257804  257805  257807  257809  257813  257815  257819  257821  257825  257831  257833  257839  257843  257845  257849  257855  257861  257863  257869  257873  257875  257881  257885  257891  257899  266669 

科目: 来源: 题型:

【题目】已知函数f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a≥ 时,设g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的两个极值点x1 , x2(x1<x2)恰为φ(x)=lnx﹣cx2﹣bx的零点,求y=(x1﹣x2)φ′( )的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C 的参数方程为 (为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.

()求曲线C 的极坐标方程;

(),若l 1 l2与曲线C 相交于异于原点的两点 AB ,求AOB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是( ).

A. ,“”是“”的必要不充分条件

B. 为真命题”是“为真命题” 的必要不充分条件

C. 命题“,使得”的否定是:“

D. 命题:“”,则是真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[﹣1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数为自然对数的底数), .

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求证:y=f(x)为偶函数;
(3)若y=f(x)在(0,+∞)上是增函数,解不等式

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求实数m的取值范围的集合;
(2)若A∩B=,求实数m的取值范围的集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:

t

男同学人数

7

11

15

12

2

1

女同学人数

8

9

17

13

3

2

若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.

(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?

(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.

(i)求抽取的4位同学中既有男同学又有女同学的概率;

(ii)记抽取的“读书迷”中男生人数为,求的分布列和数学期望

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

I)讨论的单调性;

II)当有最大值,且最大值大于,a的取值范围.

查看答案和解析>>

同步练习册答案