科目: 来源: 题型:
【题目】已知函数y=f(x)对任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是( )
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函数或是偶函数
D.以上都不对
查看答案和解析>>
科目: 来源: 题型:
【题目】【选修4-5:不等式选讲】
已知函数f(x)=|x+1|+|x-3|.
(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:
(2)若关于x的不等式f(x)<a的解集为(b, ),求a+b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线 的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A , 过A作圆的切线,斜率为 ,求双曲线的离心率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,两个椭圆, 内部重叠区域的边界记为曲线C,P是曲线C上的任意一点,给出下列四个判断:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四点的距离之和为定值;
②曲线C关于直线y=x、y=-x均对称;③曲线C所围区域面积必小于36.
④曲线C总长度不大于6π.上述判断中正确命题的序号为________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x﹣2)2+y2=1的两条切线,切点为M,N,|MN|=
(1)求抛物线E的方程
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且 = (其中O为坐标原点)
①求证:直线AB必过定点,并求出该定点Q的坐标
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′﹣ABCM.
(1)求证:AM⊥D′F;
(2)若∠D′EF= ,直线D'F与平面ABCM所成角的大小为 ,求直线AD′与平面ABCM所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,M,N,K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.
(1)求证:AN∥平面A1MK;
(2)求证:平面A1B1C⊥平面A1MK.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l经过两条直线l1:3x+4y﹣2=0与l2:2x+y+2=0的交点P.
(1)求垂直于直线l3:x﹣2y﹣1=0的直线l的方程;
(2)求与坐标轴相交于两点,且以P为中点的直线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】过抛物线E:x2=2py(p>0) 的焦点F作斜率分别为 k1,k2 的两条不同的直线 l1,l2 ,且k1+k2=2 ,l1与E 相交于点A,B, l2与E 相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为 l .
(1)若k1>0,k2>0 ,证明;;
(2)若点M到直线 l 的距离的最小值为 ,求抛物线E的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为
A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N+)
B. f(x)=9sin(x-) (1≤x≤12,x∈N+)
C. f(x)=2sinx+7 (1≤x≤12,x∈N+)
D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N+)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com