相关习题
 0  257759  257767  257773  257777  257783  257785  257789  257795  257797  257803  257809  257813  257815  257819  257825  257827  257833  257837  257839  257843  257845  257849  257851  257853  257854  257855  257857  257858  257859  257861  257863  257867  257869  257873  257875  257879  257885  257887  257893  257897  257899  257903  257909  257915  257917  257923  257927  257929  257935  257939  257945  257953  266669 

科目: 来源: 题型:

【题目】已知函数y=f(x)对任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是(
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函数或是偶函数
D.以上都不对

查看答案和解析>>

科目: 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数f(x)=|x+1|+|x-3|.

(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:

(2)若关于x的不等式f(x)<a的解集为(b, ),求a+b的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线 的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为yxc=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A , 过A作圆的切线,斜率为 ,求双曲线的离心率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,两个椭圆 内部重叠区域的边界记为曲线C,P是曲线C上的任意一点,给出下列四个判断:

①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四点的距离之和为定值;

②曲线C关于直线y=x、y=-x均对称;③曲线C所围区域面积必小于36.

④曲线C总长度不大于6π.上述判断中正确命题的序号为________________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x﹣2)2+y2=1的两条切线,切点为M,N,|MN|=
(1)求抛物线E的方程
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且 = (其中O为坐标原点)
①求证:直线AB必过定点,并求出该定点Q的坐标
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′﹣ABCM.

(1)求证:AM⊥D′F;
(2)若∠D′EF= ,直线D'F与平面ABCM所成角的大小为 ,求直线AD′与平面ABCM所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,M,N,K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.

(1)求证:AN∥平面A1MK;
(2)求证:平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l经过两条直线l1:3x+4y﹣2=0与l2:2x+y+2=0的交点P.
(1)求垂直于直线l3:x﹣2y﹣1=0的直线l的方程;
(2)求与坐标轴相交于两点,且以P为中点的直线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】过抛物线E:x2=2py(p>0) 的焦点F作斜率分别为 k1,k2 的两条不同的直线 l1,l2 ,且k1+k2=2 ,l1与E 相交于点A,B, l2与E 相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为 l .
(1)若k1>0,k2>0 ,证明;
(2)若点M到直线 l 的距离的最小值为 ,求抛物线E的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为

A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N

B. f(x)=9sin(x-) (1≤x≤12,x∈N

C. f(x)=2sinx+7 (1≤x≤12,x∈N

D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N

查看答案和解析>>

同步练习册答案