科目: 来源: 题型:
【题目】已知圆C的方程为:x2+y2=4
(1)求过点P(2,1)且与圆C相切的直线l的方程;
(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2 ,求直线l的方程;
(3)圆C上有一动点M(x0 , y0), =(0,y0),若向量 = + ,求动点Q的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据下列条件,分别求直线方程:
(1)经过点A(3,0)且与直线2x+y﹣5=0垂直;
(2)求经过直线x﹣y﹣1=0与2x+y﹣2=0的交点,且平行于直线x+2y﹣3=0的直线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移 个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0, ]上有解,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足2<x≤3.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作为邻边的平行四边形面积是8;
(4)∠EAD=60°.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图,则原图的周长是( )
A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD= ,AB=AD,E为PC的中点.
(1)求证:BC⊥AB;
(2)求AB的长;
(3)求平面BDE与平面ABP所成二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com