相关习题
 0  257947  257955  257961  257965  257971  257973  257977  257983  257985  257991  257997  258001  258003  258007  258013  258015  258021  258025  258027  258031  258033  258037  258039  258041  258042  258043  258045  258046  258047  258049  258051  258055  258057  258061  258063  258067  258073  258075  258081  258085  258087  258091  258097  258103  258105  258111  258115  258117  258123  258127  258133  258141  266669 

科目: 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2=
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)上的动点到焦点距离的最小值为 -1.以原点为圆心、椭圆的短半轴长为半径的圆与直线x﹣y+ =0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,P为椭圆上一点,且满足 + =t (O为坐标原点).当|AB|= 时,求实数t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四边形ABCD中,已知 =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的关系式;
(2)若 ,求x、y值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 的夹角为60°, ,当实数k为何值时,
(1)
(2)

查看答案和解析>>

科目: 来源: 题型:

【题目】若命题p:曲线 =1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知0<a<1,函数f(x)=loga(ax﹣1)
(I)求函数f(x)的定义域;
(Ⅱ)判断f(x)的单调性;
(Ⅲ)若m满足f(1﹣m)≥f(1﹣m2),求m的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设集合A={x|25≤2x≤4},B={x|x2+2mx﹣3m2<0,m>0}.

(1)若m=2,求A∩B;

(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B﹣EFC的体积;
(3)求二面角P﹣EC﹣D的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,其图象与y轴的交点为(0,1),且满足f(1﹣x)=f(1+x).

(1)求f(x);

(2)设 m0,求函数g(x)在[0m]上的最大值;

(3)设h(x)=lnf(x),若对于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案