科目: 来源: 题型:
【题目】在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足 =2 ;
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为2的正方体OABC﹣O′A′B′C′中,E,F分别是棱AB,BC上的动点.
(1)当AE=BF时,求证A′F⊥C′E;
(2)若E,F分别为AB,BC的中点,求直线O′B与平面B′EF所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中心在原点,焦点在x轴上的椭圆的一个顶点坐标为(0,1),其离心率为
(1)求椭圆的标准方程;
(2)椭圆上一点P满足∠F1PF2=60°,其中F1 , F2为椭圆的左右焦点,求△F1PF2的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )
A.3+2
B.3+2
C.7
D.11
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中.
(1)根据散点图判断与哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的利润与的的关系为.根据(2)的结果回答下列问题:
(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2 .
(1)求x<0时f(x)的解析式;
(2)问是否存在正数a,b,当x∈[a,b]时,g(x)=f(x),且g(x)的值域为[ , ]?若存在,求出所有的a,b的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com