相关习题
 0  258002  258010  258016  258020  258026  258028  258032  258038  258040  258046  258052  258056  258058  258062  258068  258070  258076  258080  258082  258086  258088  258092  258094  258096  258097  258098  258100  258101  258102  258104  258106  258110  258112  258116  258118  258122  258128  258130  258136  258140  258142  258146  258152  258158  258160  258166  258170  258172  258178  258182  258188  258196  266669 

科目: 来源: 题型:

【题目】下表是某厂的产量x与成本y的一组数据:

产量x(千件)

2

3

5

6

成本y(万元)

7

8

9

12

(Ⅰ)根据表中数据,求出回归直线的方程 = x (其中 = =
(Ⅱ)预计产量为8千件时的成本.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2+(2﹣a)x. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x< 时,f( +x)>f( ﹣x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0 , 证明:f′(x0)<0.

查看答案和解析>>

科目: 来源: 题型:

【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax4lnx+bx4﹣c在x=1处取得极值﹣3﹣c.
(1)试求实数a,b的值;
(2)试求函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数在区间上不单调,求的取值范围.

(2)令,是否存在实数,对任意,存在,使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】

(1)求的单调区间;

(2)在锐角中,角的对边分别为 ,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l:kx﹣y+1+2k=0(k∈R) (Ⅰ)证明直线l经过定点并求此点的坐标;
(Ⅱ)若直线l不经过第四象限,求k的取值范围;
(Ⅲ)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a,b是实数,函数f(x)=x|x﹣a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函数f(x)在[﹣4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列满足对任意的都有,且

(1)求数列的通项公式;

(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案