科目: 来源: 题型:
【题目】斜三棱柱A1B1C1﹣ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分别是A1C1 , AB的中点.
(1)求证:EF∥平面BB1C1C;
(2)求证:CE⊥面ABC.
(3)求四棱锥E﹣BCC1B1的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且, .
(1)求数列的通项公式;
(2)数列满足, .①求数列的通项公式;②是否存在正整数, (),使得, , 成等差数列?若存在,求出, 的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆心为C的圆过点A(0,﹣6)和B(1,﹣5),且圆心在直线l:x﹣y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)过点M(2,8)作圆的切线,求切线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:
每件A产品 | 每件B产品 | |
研制成本、搭载试验费用之和(万元) | 20 | 30 |
产品重量(千克) | 10 | 5 |
预计收益(万元) | 80 | 60 |
已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】若不等式x2﹣ax+b<0的解集为(1,2),则不等式 < 的解集为( )
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com