相关习题
 0  258131  258139  258145  258149  258155  258157  258161  258167  258169  258175  258181  258185  258187  258191  258197  258199  258205  258209  258211  258215  258217  258221  258223  258225  258226  258227  258229  258230  258231  258233  258235  258239  258241  258245  258247  258251  258257  258259  258265  258269  258271  258275  258281  258287  258289  258295  258299  258301  258307  258311  258317  258325  266669 

科目: 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则直线A1M与DN所成角的大小是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C的方程为:ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数时都取得极值;

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△AOB中,∠OAB= ,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B﹣AO﹣C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当VADOC:VABOC=1:2时,求CD与平面AOB所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系xOy中,△AOB和△COD为两等腰直角三角形,A(﹣2,0),C(a,0),(a>0),设△AOB和△COD的
外接圆圆心分别为点M、N.
(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:

资源\消耗量\产品

甲产品(每吨)

乙产品(每吨)

资源限额(每天)

煤(t)

9

4

360

电力(kwh)

4

5

200

劳动力(个)

3

10

300

利润(万元)

6

12

问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

已知

(1)求的值

(2)已知变量具有线性相关性,求产品销量关于试销单价的线性回归方程 可供选择的数据

(3)用表示(2)中所求的线性回归方程得到的与对应的产品销量的估计值。当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”。试求这6组销售数据中的 “好数据”。

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

同步练习册答案