科目: 来源: 题型:
【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx> ﹣ 成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:
理财金额 | 万元 | 万元 | 万元 |
乙理财相应金额的概率 | |||
丙理财相应金额的概率 |
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为元,求的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆右顶点与右焦点的距离为,短轴长为
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知为常数,对任意,均有恒成立.下列说法:
①的周期为;
②若为常数)的图像关于直线对称,则;
③若且,则必有;
④已知定义在上的函数对任意均有成立,且当时, ;又函数为常数),若存在使得成立,则的取值范围是.其中说法正确的是____.(填写所有正确结论的编号)
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,福建省大力推进海峡西岸经济区建设,福州作为省会城市,在发展过程中,交通状况一直倍受有关部门的关注,据有关统计数据显示上午6点到10点,车辆通过福州市区二环路某一路段的用时y(分钟)与车辆进入该路段的时刻t之间关系可近似地用如下函数给出:y= .求上午6点到10点,通过该路段用时最多的时刻.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期为π,且f( )= .
(1)求ω和φ的值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0, ]上的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】设ai∈R+ , xi∈R+ , i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则 的值中,现给出以下结论,其中你认为正确的是 . ①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com