科目: 来源: 题型:
【题目】甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.
(1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
查看答案和解析>>
科目: 来源: 题型:
【题目】某纺织厂订购一批棉花,其各种长度的纤维所占的比例如下表所示:
(1)请估计这批棉花纤维的平均长度与方差.
(2)如果规定这批棉花纤维的平均长度为4.90厘米,方差不超过1.200,两者允许误差均不超过0.10视为合格产品.请你估计这批棉花的质量是否合格?
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(﹣1,1)的密度曲线)的点的个数的估计值为( ) 附:若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
A.1 193
B.1 359
C.2 718
D.3 413
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2 , 且x1∈(0, ),求证:h(x1)﹣h(x2)> ﹣ln2.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足。
(1)求证:A,B,C三点共线;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0, ],函数f(x)=(2m+)||+m2的最小值为5,求实数m的值。
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)的定义域为U=(0,+),且满足条件f(4)=1。对任意的x1,x2∈U,有f(x1·x2)=f(x1)+f(x2),且当x1≠x2时,有>0。
(1)求f(1)的值;
(2)如果f(x+6)+f(x)>2,求x的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y= +10(x﹣6)2 , 其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,
超市 | A | B | C | D | E | F | G |
广告费支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程; = x+
(2)用二次函数回归模型拟合y与x的关系,可得回归方程: =﹣0.17x2+5x+20. 经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,
参考数据及公式: =8, =42. xiyi=2794, x =708,
= = , = ﹣ x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com