科目: 来源: 题型:
【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, , , , ,设是线段中点.
(1)求证: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系 中,直线 的参数方程为 ( 为参数).再以原点为极点,以 正半轴为极轴建立极坐标系,并使得它与直角坐标系 有相同的长度单位.在该极坐标系中圆 的方程为 .
(1)求圆 的直角坐标方程;
(2)设圆 与直线 交于点 、 ,若点 的坐标为 ,求 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】图是正方体的平面展开图,在这个正方体中:① 与 平行;② 与 是异面直线;③ 与 成 角;④ 与 垂直;以上四个命题中,正确的是( )
A.①②③
B.②④
C.②③④
D.③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知α,β是平面,m,n是直线.下列命题中不正确的是 ( )
A.若m∥n,m⊥α,则n⊥α
B.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥β
D.若m⊥α, ,则α⊥β
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市出租车的收费标准是:3千米以内(含3千米),收起步价8元;3千米以上至8千米以内(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.
(1)计算某乘客搭乘出租车行驶7千米时应付的车费;
(2)试写出车费 (元)与里程 (千米)之间的函数解析式并画出图像;
(3)小陈周末外出,行程为10千米,他设计了两种方案:
方案1:分两段乘车,先乘一辆行驶5千米,下车换乘另一辆车再行5千米至目的地
方案2:只乘一辆车至目的地,试问:以上哪种方案更省钱,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, , , , ,设是线段中点.
(1)求证: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直三棱柱 中,底面 是边长为2的正三角形, 是棱 的中点,且 .
(1)试在棱 上确定一点 ,使 平面 ;
(2)当点 在棱 中点时,求直线 与平面 所成角的大小的正弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.
平均车速超过 | 平均车速不超过 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为 ,若每次抽取的结果是相互独立的,求 的分布列和数学期望.
参考公式与数据: ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com