相关习题
 0  258749  258757  258763  258767  258773  258775  258779  258785  258787  258793  258799  258803  258805  258809  258815  258817  258823  258827  258829  258833  258835  258839  258841  258843  258844  258845  258847  258848  258849  258851  258853  258857  258859  258863  258865  258869  258875  258877  258883  258887  258889  258893  258899  258905  258907  258913  258917  258919  258925  258929  258935  258943  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为

(1)求圆的方程;

(2)若过点的直线与圆相交,所截得的弦长为4,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆 的两顶点为A,B如图,离心率为 ,过其焦点F(0,1)的直线l与椭圆交于C,D两点,并与x轴交于点P,直线AC与直线BD交于点Q.

(Ⅰ)当 时,求直线l的方程;
(Ⅱ)当点P异于A,B两点时,求证: 为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示, 是圆柱的母线, 是圆柱底面圆的直径, 是底面圆周上异于的任意一点, .

(1)求证:

(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:

;②是偶函数;③在定义域上是增函数;

图象的两个端点关于圆心对称;

⑤动点到两定点的距离和是定值.

其中正确的是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

查看答案和解析>>

科目: 来源: 题型:

【题目】a为实数,函数xR

(I)a=0时,求f(x)在区间[02]上的最大值和最小值

(Ⅱ)求函数f(x)的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:

休闲方式
性别

看电视

看书

合计

20

100

120

20

20

40

合计

40

120

160

下面临界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知ABBCAB=BC=aa[13]A是以A为圆心、半径为2的圆B是以B为圆心、半径为1的圆设点EF分别为圆AB上的动点, (且同向),设BAE=θ(θ[0π])

(I)a= ,且θ= 时,求的值

()a,θ表示出,并给出一组a,θ的值,使得最小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB的中点,AC=BC=2,AA1=4.

(1)当E是棱CC1的中点时,求证:CF∥平面AEB1
(2)在棱CC1上是否存在点E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义域为的函数是奇函数

(Ⅰ)求值;

(Ⅱ)判断并证明该函数在定义域上的单调性;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;

(Ⅳ)设关于的函数有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案