科目: 来源: 题型:
【题目】甲参加A , B , C三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.
科目A | 科目B | 科目C | |
甲 |
(I)求甲至少有一个科目考试成绩合格的概率;
(Ⅱ)设甲参加考试成绩合格的科目数量为X , 求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用 (基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费是与上一年度车辆发生道路交通安全违法行为或者道路交通事故的情况相联系的.交强险第二年价格计算公式具体如下:交强险最终保费基准保费(浮动比率).发生交通事故的次数越多,出险次数的就越多,费率也就越髙,具体浮动情况如下表:
某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:
已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为元.
(1)记为事件“”,求的估计值;
(2)求的平均估计值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了调查某社区中学生的课外活动,对该社区的100名中学生进行了调研,随机抽取了若干名,年龄全部介于13与18之间,将年龄按如下方式分成五组:第一组;第二组;第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三个组的频率之比为,且第二组的频数为4.
(1)试估计这100名中学生中年龄在内的人数;
(2)求调研中随机抽取的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如表:
贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
频数 | 20 | 40 | 20 | 10 | 10 |
以上表中各种贷款期限的频数作为2017年自主创业人员选择各种贷款期限的概率.
(Ⅰ)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率;
(Ⅱ)设给某享受此项政策的自主创业人员补贴为X元,写出X的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.
查看答案和解析>>
科目: 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 .
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令Cn= 设数列{cn}的前n项和Tn , 求T2n .
查看答案和解析>>
科目: 来源: 题型:
【题目】设a , b , c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a , b , c的方差最小时,a+b+c的值为( )
A.252或253
B.253或254
C.254或255
D.267或268
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知随机变量 的取值为不大于 的非负整数值,它的分布列为:
0 | 1 | 2 | n | ||
其中 ( )满足: ,且 .
定义由 生成的函数 ,令 .
(I)若由 生成的函数 ,求 的值;
(II)求证:随机变量 的数学期望 , 的方差 ;
( )
(Ⅲ)现投掷一枚骰子两次,随机变量 表示两次掷出的点数之和,此时由 生成的函数记为 ,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com