相关习题
 0  258850  258858  258864  258868  258874  258876  258880  258886  258888  258894  258900  258904  258906  258910  258916  258918  258924  258928  258930  258934  258936  258940  258942  258944  258945  258946  258948  258949  258950  258952  258954  258958  258960  258964  258966  258970  258976  258978  258984  258988  258990  258994  259000  259006  259008  259014  259018  259020  259026  259030  259036  259044  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥 中, 底面 ,底面 为直角梯形, 的中点,平面 点.、

(1)求证:
(2)求二面角 的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知各项均为正数的数列满足, ,其中.

(1) 求数列的通项公式;

(2) 设数列{bn}满足 bn=,是否存在正整数,使得b1,bm,bn成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

(3) ,记数列{cn}的前项和为,其中,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 是自然对数的底数, .
(1)求函数 的单调递增区间;
(2)若 为整数, ,且当 时, 恒成立,其中 的导函数,求 的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,曲线 的参数方程为 (其中 为参数),曲线 ,以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线 的普通方程和曲线 的极坐标方程;
(2)若射线 )与曲线 分别交于 两点,求 .

查看答案和解析>>

科目: 来源: 题型:

【题目】新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7-10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以下表格记录了他们的评分情况.
(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;
(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记 表示抽到评分不低于9分的新生儿数,求 的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下 列联表:

(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为 ,试求随机变量 的分布列和数学期望;
(2)若在犯错误的概率不超过 的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的 的值应为多少?请说明理由.附:独立性检验统计量 ,其中 .
独立性检验临界值表:

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角, , 平面ABCD⊥平面ABFE.

(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人独立来该租车点骑游(各组一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率分别为 ;两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量 ,求 的分布列.

查看答案和解析>>

科目: 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求数列{an}和{bn}的通项公式;
(2)令cn=anbn , 设数列{cn}的前n项和为Tn , 求Tn

查看答案和解析>>

同步练习册答案