相关习题
 0  258877  258885  258891  258895  258901  258903  258907  258913  258915  258921  258927  258931  258933  258937  258943  258945  258951  258955  258957  258961  258963  258967  258969  258971  258972  258973  258975  258976  258977  258979  258981  258985  258987  258991  258993  258997  259003  259005  259011  259015  259017  259021  259027  259033  259035  259041  259045  259047  259053  259057  259063  259071  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥 中, ,且 .

(1)证明:平面 ⊥平面
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学生对函数的性质进行研究,得出如下的结论:

①函数上单调递增,在上单调递减;

②点是函数图像的一个对称中心;

③存在常数,使对一切实数均成立;

④函数图像关于直线对称.其中正确的结论是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ,a∈R.
(Ⅰ)当a∈[1,e2]时,讨论函数f(x)的零点的个数;
(Ⅱ)令g(x)=tx2﹣4x+1,t∈[﹣2,2],当a∈[1,e]时,证明:对任意的 ,存在x2∈[0,1],使得f(x1)=g(x2).

查看答案和解析>>

科目: 来源: 题型:

【题目】为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形的两个顶点的中点处,,现要在该矩形的区域内(含边界),且与等距离的一点处设一个宣讲站,记点到三个乡镇的距离之和为

(Ⅰ)设,将表示为的函数;

(Ⅱ)试利用(Ⅰ)的函数关系式确定宣讲站的位置,使宣讲站到三个乡镇的距离之和最小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: 的右焦点为F,不垂直x轴且不过F点的直线l与椭圆C相交于A,B两点.
(Ⅰ)若直线l经过点P(2,0),则直线FA、FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过抛物线 的焦点,斜率为 的直线交抛物线于 )两点,且 .
(1)求该抛物线的方程;
(2) 为坐标原点, 为抛物线上一点,若 ,求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求实数的值;

(2)若不等式对一切实数恒成立,求实数的取值范围;

查看答案和解析>>

同步练习册答案