科目: 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过尾/立方米时, 的值为千克/年;当时, 是的一次函数,且当时, .
()当时,求关于的函数的表达式.
()当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列的前项和为,等比数列的前项和为,且,,.
(1)若,求的通项公式;
(2)若,求.
【答案】(1);(2)21或.
【解析】试题分析:(1)设等差数列公差为,等比数列公比为,由已知条件求出,再写出通项公式;(2)由,求出的值,再求出的值,求出。
试题解析:设等差数列公差为,等比数列公比为有,即.
(1)∵,结合得,
∴.
(2)∵,解得或3,
当时,,此时;
当时,,此时.
【题型】解答题
【结束】
20
【题目】如图,已知直线与抛物线相交于两点,且, 交于,且点的坐标为.
(1)求的值;
(2)若为抛物线的焦点, 为抛物线上任一点,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】命题方程表示双曲线;命题不等式的解集是. 为假, 为真,求的取值范围.
【答案】
【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.
试题解析:
真
,
真 或
∴
真假
假真
∴范围为
【题型】解答题
【结束】
18
【题目】如图,设是圆上的动点,点是在轴上的投影, 为上一点,且.
(1)当在圆上运动时,求点的轨迹的方程;
(2)求过点且斜率为的直线被所截线段的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)为一次函数,g(x)为二次函数,且f[g(x)]=g[f(x)].
(1)求f(x)的解析式;
(2)若y=g(x)与x轴及y=f(x)都相切,且g(0)= ,求g(x)的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数图象如图,是的导函数,则下列数值排序正确的是( )
A.
B.
C.
D.
【答案】C
【解析】结合函数的图像可知过点的切线的倾斜角最大,过点的切线的倾斜角最小,又因为点的切线的斜率,点的切线斜率,直线的斜率,故,应选答案C。
点睛:本题旨在考查导数的几何意义与函数的单调性等基础知识的综合运用。求解时充分借助题设中所提供的函数图形的直观,数形结合进行解答。先将经过两切点的直线绕点逆时针旋转到与函数的图像相切,再将经过两切点的直线绕点顺时针旋转到与函数的图像相切,这个过程很容易发现,从而将问题化为直观图形的问题来求解。
【题型】单选题
【结束】
9
【题目】已知、为双曲线:的左、右焦点,点在上,,则( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下四个命题中:
①某地市高三理科学生有15000名,在一次调研测试中,数学成绩 服从正态分布 ,已知 ,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上(包括120分)的试卷中抽取 份;
②已知命题 ,则 : ;
③在 上随机取一个数 ,能使函数 在 上有零点的概率为 ;
④设 ,则“ ”是“ ”的充要条件.
其中真命题的序号为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com