科目: 来源: 题型:
【题目】设函数的图像与轴的交点为,在轴右侧的第一个最高点和第一个与轴交点分别为
(1)求的解析式;
(2)将函数图像上所有点的横坐标变为原来的倍(纵坐标不变),再将所得图像沿轴正方向平移个单位,得到函数的图像,求的解析式;
(3)在(2)的条件下求函数在上的值域。
查看答案和解析>>
科目: 来源: 题型:
【题目】某市今年出现百年不遇的旱情,广大市民自觉地节约用水.市自来水厂观察某蓄水池供水情况以制定节水措施,发现某蓄水池中有水450吨,水厂每小时可向蓄水池中注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为吨,现在开始向水池注水并向居民小区供水.
(1)请将蓄水池中存水量S表示为时间t的函数;
(2)问开始蓄水后几小时存水量最少?
(3)若蓄水池中水量少于150吨时,就会出现供水量紧张现象,问每天有几小时供水紧张?
查看答案和解析>>
科目: 来源: 题型:
【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】A
【解析】双曲线的方程为,则渐近线方程为,渐近线方程为: ,反之当渐近线方程为时,只需要满足,等轴双曲线即可.故选择充分不必要条件.
故答案为:A.
【题型】单选题
【结束】
10
【题目】如图,为测量河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,在点 处测得 点的仰角为 ,再由点 沿北偏东 方向走 到位置 ,测得 ,则塔 的高是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题 :若 ,则 ,下列说法正确的是( )
A. 命题 的否命题是“若 ,则 ”
B. 命题的逆否命题是“若 ,则”
C. 命题是真命题
D. 命题的逆命题是真命题
【答案】D
【解析】A. 命题 的否命题是若
B. 命题的逆否命题是“若,则
C. 命题是假命题,比如当x=-3,就不满足条件,故选项不正确.
D. 命题的逆命题是若是真命题.
故答案为:D.
【题型】单选题
【结束】
9
【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f (x)的定义域是,对任意
当时,.关于函数给出下列四个命题:
①函数是奇函数;
②函数是周期函数;
③函数的全部零点为;
④当时,函数的图象与函数的图象有且只有三个公共点.
其中真命题的个数为 .
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若,
求证:直线过定点;
(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆中心为坐标原点O,对称轴为坐标轴,且过M(2, ) ,N(,1)两点,
(I)求椭圆的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com