相关习题
 0  259072  259080  259086  259090  259096  259098  259102  259108  259110  259116  259122  259126  259128  259132  259138  259140  259146  259150  259152  259156  259158  259162  259164  259166  259167  259168  259170  259171  259172  259174  259176  259180  259182  259186  259188  259192  259198  259200  259206  259210  259212  259216  259222  259228  259230  259236  259240  259242  259248  259252  259258  259266  266669 

科目: 来源: 题型:

【题目】已知函数

(1)判断函数的单调性,并说明理由

(2)若对任意的恒成立,求a的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.

(1)求二面角A﹣PB﹣C的余弦值.
(2)在线段CP上是否存在一点E,使得DE⊥PB,若存在,求线段CE的长度,不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

3

4

7

14

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

17

x

4

2

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

1

2

8

9

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

10

10

y

4


(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;
(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.

甲校

乙校

总计

优秀

非优秀

总计

参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k0

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(I)求的标准方程;

(Ⅱ)若为坐标原点, 的焦点,过点且倾斜角为的直线 两点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的左焦点为右顶点为离心率为已知点是抛物线的焦点到抛物线准线的距离是.

1)求椭圆的方程和抛物线的方程

2)若是抛物线上的一点且在第一象限满足直线交椭圆于两点的面积取得最大值时求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】解答
(1)在公比为2的等比数列{an}中,a2与a5的等差中项是9 .求a1的值;
(2)若函数y=a1sin( φ),0<φ<π的一部分图象如图所示,M(﹣1,a1),N(3,﹣a1)为图象上的两点,设∠MON=θ,其中O为坐标原点,0<θ<π,求cos(θ﹣φ)的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设常数使方程在区间上恰有三个解,则实数的值为(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某运输公司有7辆可载型卡车与4辆可载型卡车9名驾驶员,建筑某段高速公路中,此公司承包了每天至少搬运沥青的任务已知每辆卡车每天往返的次数为型车8 型车6次,每辆卡车每天往返的成本费为型车160元, 型车252元,每天派出型车和型车各多少辆公司所花的成本费最低

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱柱侧面为菱形 .

1)证明:

2)若求二面角的正弦值.

查看答案和解析>>

同步练习册答案